Leaf Senescence in a Nonyellowing Mutant of Festuca pratensis: Metabolism of Cytochrome f.
نویسندگان
چکیده
In a mutant genotype of Festuca pratensis Huds., net degradation of a number of thylakoid membrane proteins during senescence is impaired. Previous studies have suggested that the highly hydrophobic intrinsic chlorophyll-binding proteins were the definitive subjects of the metabolic lesion. In the present study we find that cytochrome f, as determined by haem-staining, Western blotting, enzyme-linked immunosorbent assay, and immunogold electron microscopy, is also abnormally stable in the mutant. The structural feature common to all the proteins in the mutant so far recognized to be abnormally stable is possession of a tetrapyrrole prosthetic group. It is suggested that degradation of chlorophyll and haem may regulate degradation of the associated apoproteins, and hence has an important role to play in membrane protein turnover and in mobilisation of amino acids during chloroplast disassembly.
منابع مشابه
Separation of Chlorophyll Degradation from Other Senescence Processes in Leaves of a Mutant Genotype of Meadow Fescue (Festuca pratensis L.).
Chlorophyll levels in l-cm sections of the youngest fully expanded leaves of normal (Y) Festuca pratensis L. declined almost to zero over a period of 6 days after excision. Chlorophyll in a mutant genotype (NY) remained near the initial level for the whole of this period. Abscisic acid promoted pigment loss in Y but had no significant effect on chlorophyll in NY. Kinetin retarded pigment loss i...
متن کاملMolecular tagging of a senescence gene by introgression mapping of a stay-green mutation from Festuca pratensis.
* Intergeneric hybrids between Lolium multiflorum and Festuca pratensis (Lm/Fp) and their derivatives exhibit a unique combination of genetic and cytogenetic characteristics: chromosomes undergo a high frequency of homoeologous recombination at meiosis; the chromosomes of the two species can easily be discriminated by genomic in situ hybridization (GISH); recombination occurs along the entire l...
متن کاملAnalysis of the chlorophyll catabolism pathway in leaves of an introgression senescence mutant of Lolium temulentum.
Pigments, proteins and enzyme activity related to chlorophyll catabolism were analysed in senescing leaves of wild-type (WT) Lolium temulentum and compared with those of an introgression line carrying a mutant gene from stay-green (SG) Festuca pratensis. During senescence of WT leaves chlorophylls a and b were continuously catabolised to colourless products and no other derivatives were observe...
متن کاملCross-species identification of Mendel's I locus.
A key gene involved in plant senescence, mutations of which partially disable chlorophyll catabolism and confer stay-green leaf and cotyledon phenotypes, has been identified in Pisum sativum, Arabidopsis thaliana, and Festuca pratensis by using classical and molecular genetics and comparative genomics. A stay-green locus in F. pratensis is syntenically equivalent to a similar stay-green locus o...
متن کاملMolecular genetic control of leaf lifespan in plants - A review
Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 93 2 شماره
صفحات -
تاریخ انتشار 1990